Unusual Luminescence of Ca₈[Al₁₂O₂₄](WO₄)₂: Tb³⁺

LIU, Sheng-Li^{*,a}(刘胜利) SU, Qiang^b(苏锵)

^a School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

^b Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China

The luminescence properties of aluminate sodalite $Ca_8[Al_{12}O_{24}](WO_4)_2$ (CAW) undoped and doped with Tb^{3+} are reported and discussed. At room temperature the emission of tetrahedral WO_4^{2-} in CAW showed an abnormally small Stokes shift (9060 cm⁻¹), which is related to the crystal structure of CAW. A strong absorption band in the excitation spectrum of the Tb^{3+} -activated CAW is ascribed to the absorption of the charge transfer state Tb^{4+} - W^{5+} , into which the excitation resulted in the efficient emission from the 5D_4 level of Tb^{3+} , but not from the 5D_3 level.

Keywords aluminate sodalite, terbium ion, tungstate, charge transfer, Stokes shift, luminescence

Introduction

The luminescence of tungstates unactivated and activated with trivalent rare-earth ions has been the subject of extensive investigations.¹⁻⁵ We are interested in the luminescence of WO_4^{2-} and Tb^{3+} in $Ca_8[Al_{12}O_{24}]$ -(WO₄)₂ (CAW) for the following two reasons. First, different from those compounds which have been investigated before, CAW has a so-called sodalite framework.^{6,7} Will it give rise to an unusual luminescence behavior of WO_4^{2-} ? Second, when Tb^{3+} ions and some high-valence transition metal ions with a d⁰ con-figuration (*e.g.*, W^{6+} and V^{5+}) coexist in a compound, the luminescence of the Tb³⁺ ions is often quenched due to the formation of the charge-transition (CT) state (e.g., $\text{Tb}^{4+}\text{-W}^{5+}$ and $\text{Tb}^{4+}\text{-V}^{4+}$).^{8,9} However, if a Tb^{3+} is substituted for a Ca^{2+} in a lattice and thus bears an effectively positive charge, the quenching is weakened, and even the efficient luminescence can be observed.¹⁰ Will the situation occur in CAW? We have observed that the emission of tetrahedral WO_4^2 has a much smaller Stokes shift in CAW than in other compounds containing WO_4^{2-} tetrahedra. In addition Tb^{3+} showed an efficient green emission in CAW when excited to the charge transition state $Tb^{4+}-W^{5+}$, usually giving rise to the quenching of the Tb^{3+} luminescence. In this paper, we report and discuss these results.

Experimental

The samples were prepared by firing the mixtures of CaCO₃ (A.R.), Al₂O₃ (S.P.), WO₃ (A.R.), Tb₄O₇ (99.95%) and Na₂CO₃ (A.R.) in air at 1200 $^{\circ}$ C for 6 h and then at 1380 $^{\circ}$ C for 17 h. The crystal structure of

the products were checked by X-ray powder diffraction analysis with a Rigaku 2028 diffractometer using Cu K α radiation. The emission and excitation spectra of the samples were recorded on an SPEX Fluorolog-2 spectrofluorometer with a 450 W xenon lamp as an excitation source. The IR absorption spectrum of CAW was measured with a Perkin-Elemer 850B infrared spectrophotometer. All measurements were carried out at room temperature (r.t.).

Results and discussion

Spectral properties of CAW

The X-ray powder diffraction analysis (Figure 1) showed that the prepared samples are orthorhombic with space group Aba2 and a=2.618, b=1.306, c=0.934 nm.

Figure 1 X-ray diffraction pattern of CAW.

^{*} E-mail: slliu@hnust.edu.cn; Fax: 0732-8291379; Tel.: 0732-8291770 Received November 3, 2003; revised and accepted January 19, 2004. Project supported by the National Natural Science Foundation of China (No. 29771029).

Figure 2 is the excitation and emission spectra of CAW. The emission spectrum consists of a broad band, the maximum of which is located at 431 nm. The excitation spectrum is composed of a relatively narrow band peaking at 310 nm. The Stokes shift of the emission and the half-width of the emission band are about 9060 cm⁻¹ and 5580 cm⁻¹, respectively. The tungstate WO_4^{2-} exists as a tetrahedron in CAW^{6,7} and its excitation and emission arise from internal WO_4^{2-} CT transition. As far as we know, the Stokes shift is the smallest one reported so far for the emission of WO_4^{2-} tetrahedra, the Stokes shifts of WO_4^{2-} ion emission exceeding generally 15000 cm^{-1.11}

Figure 2 (a) Excitation (λ_{em} =431 nm) and (b) emission (λ_{ex} = 310 nm) spectra of Ca₈[Al₁₂O₂₄](WO₄)₂ at r.t..

The small Stokes shift is probably related to the structure of CAW. The structure of CAW is characterized by corner-sharing AlO₄ tetrahedra forming the so-called sodalite framework. The framework encloses relatively large cages, the centers of which are occupied by the tetrahedral cage anions WO_4^{2-} .^{6,7} When excited, the WO_4^{2-} group is in the anti-bonding excited state, and the W—O distance is larger than in the ground state. In general, because the W^{6+} ion is too large for a tetrahedral hole in oxides, the expansion is large, resulting in a large Stokes shift.² However, the expansion is now hindered by the rigid framework of CAW, resulting only in a small offset of the potential energy curve of the excited state and thus in the small Stokes shift.

Tb³⁺-activated CAW

Under UV light excitation, the Tb³⁺-activated CAW samples showed efficient green emission. The excitation and emission spectra of Ca_{8-2x}Tb_xNa_x[Al₁₂O₂₄](WO₄)₂ with x=0.008, 0.02, 0.08 are similar. For x=0.008, the spectra are shown in Figure 3. The excitation spectrum consists of a strong absorption band peaking at 277 nm and some weak lines ranging from 330 to 400 nm, the lines arising from intra-4f⁸ configuration transitions of Tb³⁺. Upon excitation into the band ($\lambda_{ex}=277$ nm), the emission of the sample came entirely from the ⁵D₄ \rightarrow ⁷F_J (J=3, 4, 5, 6) transitions of the Tb³⁺, whereas the emission of the ⁵D₃ \rightarrow ⁷F_J transition could not be observed. Besides, no WO²₄ emission was observed in the

emission spectrum, even if the excitation wavelength was changed to 310 nm.

Figure 3 (a) Excitation (λ_{em} =542 nm) and (b) emission (λ_{ex} = 277 nm) spectra of Ca_{7.984}Tb_{0.008}Na_{0.008}[Al₁₂O₂₄](WO₄)₂ at r.t..

It is remarkable that the emission from the ${}^{5}D_{3}$ level of the Tb³⁺ is so strongly quenched in the sample. The occurrence of this situation is generally explained in references by the followings:

(i) Cross relaxation:^{12,13} In concentrated terbium systems, the average distance between Tb^{3+} ions is small, and the ${}^{5}D_{3}$ state can be relaxed nonradiatively to the ${}^{5}D_{4}$ state via the "cross relaxation" processes such as $Tb^{3+}({}^{5}D_{3}) + Tb^{3+}({}^{7}F_{6}) \rightarrow Tb^{3+}({}^{5}D_{4}) + Tb^{3+}({}^{7}F_{0})$. This transfer spans some 1.3 nm.¹⁴ As a result, the ${}^{5}D_{3}$ emission decreases (concentration quenching), whereas the ${}^{5}D_{4}$ emission increases. The phenomenon can be observed in most compounds. In some cases, although the Tb^{3+} concentration is small, there is still a considerable amount of cross relaxation, because the Tb^{3+} ions are incorporated into a host lattice in pairs, as can be seen in $CsCdBr_{3}$ - Tb^{3+} , 15,16 the cross relaxation occurs between the Tb^{3+} ions in pairs.

(ii) Multi-phonon emission:^{10,17} If there exist high-frequency phonons in a host lattice, the radiationless relaxation process ${}^{5}D_{3} \rightarrow {}^{5}D_{4}$ can take place accompanied by the excitation of a few of such phonons. It has been shown¹⁸ that if the energy gap (viz. the energy difference between the ${}^{5}D_{3}$ and ${}^{5}D_{4}$ levels) is equal to or less than five times of the phonon energy, the radiationless relaxation process can effectively compete with the radiative transitions ${}^{5}D_{3} \rightarrow {}^{7}F_{J}$ (J=3, 4, 5, 6). In LnMgB₅O₁₀ (Ln=La, Gd),^{19,20} for example, the maximum phonon energy is about 1400 cm⁻¹ (about a quarter of the energy difference between the ${}^{5}D_{3}$ and ${}^{5}D_{4}$ levels), and no emission from the ${}^{5}D_{3}$ state could be observed even for a low Tb³⁺ concentration.

Besides, if a phosphor is doped with a Tb^{3+} and a sensitizer, and the emission spectrum of the sensitizer overlaps much more favorably with the 5D_4 level of Tb^{3+} than with the 5D_3 level, the 5D_4 emission is much stronger than the 5D_3 emission. Examples are $\text{CaSO}_4\text{-Tb}^{3+}$, V^{5+10} and $\text{La}_3\text{WO}_6\text{Cl}_3\text{-Tb}^{3+}$.² This situation is equivalent to that in which the Tb^{3+} is directly excited to the 5D_4 level.

According to our experimental results, the radiationless decay of the ${}^{5}D_{3}$ state of the Tb³⁺ arising from relaxation does not occur а cross in Ca_{7.984}Tb_{0.008}Na_{0.008}[Al₁₂O₂₄](WO₄)₂. First, there is a low Tb³⁺ concentration in the sample. Second, in many compounds, a cross relaxation can also occur between Sm³⁺ ions: Sm³⁺(⁴G_{5/2}) + Sm³⁺(⁶H_{5/2}) \rightarrow 2Sm³⁺(⁶F_{9/2}). This transfer can occur over about 2 nm.¹⁴ The transfer distance is comparable with that for Tb³⁺ ions (1.3 nm). For the sake of comparison, we prepared the sample $Ca_{7.84}Sm_{0.08}Na_{0.08}[Al_{12}O_{24}](WO_4)_2$ (note that the concentration of Sm^{3+} in the sample is ten times that of the Tb^{3+} in $Ca_{7.984}Tb_{0.008}Na_{0.008}[Al_{12}O_{24}](WO_{4})_{2}$). In the sample, we did not find appreciable quenching of the emission from the ${}^{4}G_{5/2}$ level of Sm³⁺. Therefore, we conclude that the quenching of the ${}^{5}D_{3}$ emission of Tb³⁺ in CAW is not the result of the concentration quenching, and also not of the pair effect of Tb^{3+} ions, because we have no reason to believe that the Tb^{3+} ions have been incorporated into CAW in pair, but Sm³⁺ ions have not been.

Multi-phonon emission does not give rise to so strong decay of the ${}^{5}D_{3}$ state of the Tb^{3+} in CAW. The maximum vibration frequency of CAW, obtained from the IR spectrum, is 985 cm⁻¹. Silicates and phosphates usually have about the same vibration frequency as this. For example, the maximum frequencies of the phonons in Mg₂Y₈(SiO₄)₆O₂²¹ and LaPO₄²² are 970 and 1080 cm⁻¹, respectively. It was observed that the ${}^{5}D_{3}$ and the ${}^{5}D_{4}$ emissions have comparable intensities in these two compounds.^{21,23}

The strong absorption band in the excitation spectrum of the Tb³⁺ emission (see Figure 3(a)) is not ascribed to the absorption of the WO_4^{2-} , because it seems impossible that the incorporation of such a small amount of Tb³⁺ and Na⁺ ions could lead to so large a shift of the position of the WO_4^{2-} absorption. This means that the luminescence of the Tb³⁺, different from that in CaSO₄: V, Tb,¹⁰ is not due to the energy transfer from the WO_4^{2-} to the Tb³⁺, and the inefficiency of the ⁵D₃ state emission not to the poor overlap of the WO_4^{2-} emission band with the ⁵D₃ level of Tb³⁺.

We ascribed the above-mentioned absorption band to the absorption of the CT process between the Tb^{3+} and the W^{6+} , viz. $Tb^{3+}-W^{6+}\rightarrow Tb^{4+}-W^{5+}$. The CT process as such (metal-to-metal) usually quenches the luminescence of the relevant species, as can be seen in YVO_4-Tb^{3+} , $9 SrTiO_3-Ce^{3+}$ and $La_3WO_6Cl_3-Ce^{3+}$.² However, the process does not necessarily lead to the quenching of all possible luminescences, as was pointed out by Blasse and Sabbatini.¹⁷ In order to explain the luminescence of the Tb^{3+} in CAW, a configurational coordination diagram is shown in Figure 4. The parabola representing the potential energy of the CT state has a large offset relative to the ground state due to the weak bond in the CT state. The equilibrium position of the CT state and the 5D_4 state. When excited to the CT state, the system relaxes rapidly to the equilibrium position followed by a nonradiative relaxation to the ${}^{5}D_{4}$ state, from which the radiative transitions ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J=3, 4, 5, 6) occur. Consequently, the efficient emission from the ${}^{5}D_{4}$ state can be observed, but that from the ${}^{5}D_{3}$ state can not.

Figure 4 Schematic configuration coordinate diagram with energy *E* and configuration coordinate *q* for Tb^{3+} in Ca₈[Al₁₂O₂₄](WO₄)₂. For simplicity, only a few of parabolas of the Tb³⁺ 4f⁸ configuration are drawn.

According to the model, upon excitation into a certain Tb^{3+} level between the ${}^5\text{D}_3$ state and the CT state, the ${}^5\text{D}_3$ and the ${}^5\text{D}_4$ emission with about the same intensity should be observed. This situation occurs indeed. Figure 5 is the emission spectrum of Ca_{7.984}Tb_{0.008}Na_{0.008}[Al₁₂O₂₄](WO₄)₂ under the excitation of 352 nm (the ${}^5\text{L}_9$ level of Tb³⁺).

Figure 5 (a) Excitation (λ_{em} =542 nm) and (b) emission (λ_{ex} = 352 nm) spectra of Ca_{7.984}Tb_{0.008}Na_{0.008}[Al₁₂O₂₄](WO₄)₂ at r.t. (see also the text).

Finally we explain why we do not assign the strong absorption band to the $4f \rightarrow 5d$ transition of the Tb^{3+} . Because $4f \rightarrow 5d$ transition is the so-called Rydberg transition²⁵ and the Tb^{3+} (on a Ca^{2+} site) in CAW bears an effectively positive charge, we expect that the excited 5d state will lie at a high energy level and has a poten-

tial energy parabola with a small offset. In other words, the minimum of the 5d state curve will fall inside the ${}^{5}D_{3}$ state curve. Therefore, we could observe the stronger emission from the ${}^{5}D_{3}$ state. But it was not true.

References

- Brixner, L. H.; Chen, H.-Y.; Foris, C. M. Mater. Res. Bull. 1982, 12, 1545.
- 2 Blasse, G.; Dirksen, G. J.; Brixner, L. H. J. Solid State Chem. 1983, 46, 294.
- 3 Van Vliet, J. P. M.; Blasse, G. J. Solid State Chem. **1990**, 85, 56.
- 4 Wang, Y.-H.; Wang, X.-L.; H, C.-W.; Wang, E.-B.; Shi, C.-S. *Chin. J. Chem.* **2002**, *20*, 336.
- 5 Cheng, Z.-X.; Lu, Q.-M.; Zhang, S.-J. J. Cryst. Growth 2001, 222, 797.
- 6 Depmeier, W. Acta Crystallogr. 1984, C40, 226.
- 7 Depmeier, W. Acta Crystallogr. 1988, B44, 201.
- 8 Blasse, G.; Bril, A. Philips Res. Rep. 1967, 22, 481.
- 9 DeLosh, R. G.; Tien, T. Y.; Gibbons, E. F.; Zacmanidis, P. J.; Stadler, H. L. J. Chem. Phys. **1970**, 53, 681.
- 10 Draai, W. T.; Blasse, G. Phys. Status Solidi 1974, A21, 569.
- 11 Blasse, G. Struct. Bonding 1980, 42, 1.

- Van Uitert, L. G.; Johnson, L. F. J. Chem. Phys. 1966, 44,
- 3514.
 Berdowski, P. A. M.; Lammers, M. J. J.; Blasse, G. Chem. Phys. Lett. 1985, 113, 387.
- 14 Blasse, G. Rev. Inorg. Chem. 1983, 5, 319.

12

- 15 Lammers, M. J. J.; Blasse, G. Chem. Phys. Lett. 1986, 126, 405.
- 16 Berdowski, P. A. M.; Lammers, M. J. J.; Blasse, G. J. Chem. Phys. 1985, 83, 476.
- 17 Blasse, G.; Sabbatini, N. Mater. Chem. Phys. 1987, 16, 237.
- 18 Schuurmans, M. F. H.; Van Dijk, J. M. F. Physica 1984, B123, 131.
- 19 Fouassier, C.; Saubat, B.; Hagenmuller, P. J. Lumin. 1981, 23, 405.
- 20 Bujjs, M.; Van Vliet, J. P. M.; Blasse, G. J. Lumin. **1986**, 35, 213.
- 21 Lin, J.; Su, Q. J. Mater. Chem. 1995, 5, 1151.
- 22 Tie, S.-L.; Su, Q.; Yu, Y.-Q. J. Solid State Chem. **1995**, 114, 282.
- 23 Ropp, R. C. J. Electrochem. Soc. 1968, 115, 841.
- 24 Blasse, G.; Dirksen, G. J. J. Solid State Chem. 1981, 37, 390.
- 25 Blasse, G. J. Solid State Chem. 1974, 9, 147.

(E0311034 CHENG, B.)